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1. INTRODUCTION

This report documents work performed on AFOSR Grant 90-0271 - "An Additive
Turbulent Decomposition of the Navier-Stokes Equations Implemented on Highly Parallel
Computer Systems." The work was performed at the University of Kentucky (UK), and (on a
subcontract to the grant) at UCLA, during the period 1 June 1990 to 31 May 1991. A report
on the first four months or effort was submitted in the form of an Annual Report at the end of
October, 1990. We shall begin this report by presenting some background information,
following this with a brief summary of the first four months of work and then the main body
of the report. The main items treated in this report will represent work completed during the
period 1 October 1990 to 31 May 1991; they include our continuing work on the transition to
turbulence in channel flow, the beginnings of a 2-D implementation of the additive turbulent
decomposition (ATD) in generalized coordinates, work on the interaction between chemical
kinetics and turbulence, and further analyses of ATD and domain decomposition. We shall
end with a summary of our work on this project as a whole, including all work supported by
AFOSR grants 90-0271 and 89-0281, and will list the publications and presentations which
have resulted from this worv

1.1 Background

Additive turbulent decomposition (ATD) is an approach to turbulence simulation, first
proposed by McDoi~ough, et al. [1], who were motivated by the observation that none of the
present methods for turbulence simulation are really acceptable for the broad range of
turbulent flows that must be analyzed for practical engineering problems. The classical
methods - mixing length, k-E, and Reynolds stress models - are efficient enough, but are
not predictive. Moreover, if the Reynolds averaging procedure on which these methods are
based corresponds to time averaging, the results will not even be consistent with the Navier-
Stokes equations. On the other hand, higher-level techniques such as large eddy simulation
(LES) and direct numerical simulation (DNS) provide results that are generally consistent
with solutions to the Navier-Stokes equations, and are predictive or nearly so, but they are
not efficient enough for application to high Reynolds-number (Re) engineering problems on
present or forseeable computing hardware.

In a structural sense, ATD lies in between LES and DNS. Large-scale and small-scale
components of a flow field are treated separately, corresponding respectively to the resolved
and subgrid-scale (SGS) parts of LES, but (unlike LES) no formal averaging or filtering is
employed in constructing the equations of ATD. In particular, the governing equations are
split into large- and small-scale parts by an additive decomposition. There are cross-terms
connecting these equations but, in contrast to LES, there are equations for each separate
factor in these cross-terms, so there is no closure problem. An additional advantage of ATD
is that the algorithm lends itself to a high level of parallelization. Thus, on computers with
many parallel processors, the clock time required to perform a simulation can be greatly
reduced. Section 2.2 below describes a parallel ATD algorithm.

In the process of splitting the governing equations into equations for the large- and
small-scale parts of a flow, ATD renuires the introduction of decomposition pararmeters.
These may be selected arbitrarily, but one selection at least has a clear physical
interpretation. This is the particular decomposition identified by Hylin in McDonough, et
al.[2, in which the split equations for the velocity time-derivatives are in the form of
transport equations for the large- and small-scale momentum. For incompressible flow these
equations are:

au + V.(uu) + V-(u*u) -Vp + -A (1-1)
a Re
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au* + V.(uu*) + V.(u*u*) = -Vp* + -'"1Au* (1-2)

V.u = (1-3)

V-u* = -8 (1-4)

where 8 is a decomposition divergence, which we set equal to zero. These equations form
the basis for the work below, except for the 1-D work on chemical kinetics and turbulence,
and the work described in the appendix.

1.2 Summary of the Work Performed from June through September, 1990.

During the first four months of the current grant, we completed the initial development of a
numerical algorithm for solving the small-scale Navier-Stokes equations in a 2-D cell. As a
test problem, we imposed periodic boundary conditions on the cell and looked at the
evolution of a vortical perturbation under the influence of a uniform large-scale shear. The
preliminary results demonstrated that the algorithm was accurate to at least second-order in
time, and that the flow seemed to be related to other flows describable in terms of "inner
coordinates."

Another part of our work in the first four months was concerned with analyses of the
2-D implementation of ATD in generalized coordinates. The goal of this work is to gain an
understanding of what is required in order to construct reasonably portable ATD modules
that can be added to existing CFD codes to enharce their turbulence simulation capabilities.
We chose to employ a Fourier-Galerkin representation of the small-scale equations and
looked at the issue of including metric information in the Galerkin inner products. We also
began the development of a code for the large-scale Navier-Stokes equations, employing
generalized coordinates in two dimensions. The code is based on a projection method like
that employed by Kim and Moin [3], extended to generalized coordinates and using
intermediate boundary conditions that result in second-order temporal accuracy. The
individual split steps are quasi-linearized in 8-form and solved via Douglas-Gunn time-
splitting [4].

Lastly, we continued to examine the mathematical relations between ATD and related
methods, including the development of fast solvers for elliptic problems using domain
decomposition techniques.

2. TRANSITION TO TURBULENCE IN CHANNEL FLOW

2.1 Implementation of the Small-Scale Equations

2.1.1 Summary of Work to Date. In our most recent report [51, we mentioned our
implementation of the 2-D small-scale equations. This uses a Chebyshev tau method for the
spatial discretization of the equations, the Crank-Nicolson method for the temporal
discretization of :he linear velocity terms, and a second-order predictor-corrector method for
the temporal discretization ot me nonlinear and pressure gradient terms. The resulting
equations are in Helmholtz or Poisson form, and we solve them by mea,.; of a variation on
the Haidvogel-Zang algorithm [6,7].

We first implemented the small-scale equations using periodic boundary conditions on
the velocity but, as discussed below, these later proved unsuitah!: for o"r test pic lcz,-.
Furthermore, a full implementation of the ATD algorithm requires a combination of Dirichlet
and Neumann conditions on the boundaries of the small-scale cells. Accordingly, we have
modified our computer code for the small-scale equations to handle an arbitrary combination
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of Dirichlet and Neumann conditions. The code supports up to 33 Chebyshev modes in each
direction, and can use for the velocity any initial condition which meets the mode restriction
and is zero on the boundaries. With minor modifications, the small-scale code is ready to be
used as a subroutine in an implementation of the complete ATD algorithm for 2-D flow in
rectangular geometries.

2.12 Description of the Test Problem. As a test problem, we have examined the decay of a
vortical perturbation in a single small-scale cell, subject to a uniform large-scale shear. We
initially imposed periodic boundary conditions [51, but imposition of the proper pressure
boundary condition - that identified by Gresho and Sani [8] - showed that the small-scale
pressure was not periodic, and hence that periodic boundary conditions were not appropriate.
The symmetry inherent in the definition of the test problem, together with the results
obtained using periodic boundary conditions, then led us to examine rotationally symmetric
boundary conditions of order two. Interestingly, imposing these proved to be identical to
imposing homogeneous Dirichlet conditions on all four boundaries, i.e., to using a
completely closed boundary, which is also inappropriate for this flow.

This identity, however, led to a test of a projection technique which will be used in an
implementation of the full ATD algorithm to ensure that the small-scale solution is globally
continuous. Briefly, this technique uses Lagrange multipliers to project onto a divergence-
free subspace a trial solution for the velocity fluxes through the boundaries. We used this
technique in conjunction with the condition or. rotational symmetry, and compared the
resulting solution to that obtained by imposing homogeneous Dirichlet conditions directly.
The two solutions were identical almost to machine precision, completely validating the
projection technique.

The appropriate boundary conditions for this flow turn out to be those corresponding to
an isolated vortex - one far from any boundarier to the large-scale flow - or a "semi-
isolated" vortex - one bounded by a wall on one side only. For the isolated vortex, open
(i.e., flow-through) boundary conditions are used on all four sides of the cell, while for the
semi-isolated vortex, open conditions are used on three sides and a homogeneous Dirichlet
condition is used on the side representing the wall. We are currently modeling open
boundaries by imposing an homogeneous Neumann condition on the velocities, and on all
boundaries have used a homogeneous Neumann condition for the pressure. This latter
condition, especially, is not quite correct [81, but a recent paper by Gresho suggests that the
errors may be confined close to the boundaries [9].

The small-scale test problem is defined in a square, x E [-1,1], y e [-1,1], and the
initial small-scale perturbation is given by the stream function:

= C ( 1 - 4x2 + 6x 4 - 4x6 +x8 ) ( 1 -4y2 + 6y4 -4y 6 +y ) (2-1)

where C is a constant expressing the strength of the perturbation. This stream function
yields a vortex which has zero velocity on the boundary of the defining square. In fact, the
velocity is C2 on the boundary. The perturbation pressure is determined by using the
perturbation velocity in the Poisson equation for the small-scale pressure:

Ap* = V.( 1eAU - V-(uu*) - V-(u'u*) (2-2)

Re/

On sona boundaries we used for the perturbation pressure the Neumann condition identified
bv Gresho and Sani [?], with the given strena ."-i:ctui, this becorr.l-s a,, hniwrnene,,u
Neumaun condition. On open boundaries we set the perturbation pressure to zero, which
implicitly sets the initial acceleration on those boundaries. Setting the initial pressure on
open boundaries to zero also ensures that the pressure is CO on the boundary. Thus defined,
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both the velocity perturbation and the pressure perturbation have compact support.
The form of the initial vortex is given by equation 2-1. If, additionally, the initial

strength is held constant, then the test problem is governed by a single parameter, which may
be expressed either as a Reynolds number or as a non-dimensional vortex diameter. The two
are related according to

q _ =- (2-3)
V

where X is the diameter of the initial vortex, duldy is the shear strain-rate for the large-scale
flow, and Re is the half-diameter Reynolds number.

2.13 Results to Date for the Test Problem. We have solved the problem described above for
Reynolds numbers ranging from 1 to 3000. For the cases we have simulated, figures 2-1 and
2-2 show the decay or growth of the Chebyshev-weighted L2 norm of the small-scale velocity
field:

Iu*LZ f*. u* dx dy (2-4)

2.50E-03
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Figure 2-1. Decay of the velocity norm of an isolated vortex.

In most of the cases shown, there is an initial transient - due to our particular initial
and boundary conditions - followed by a long period of decay. The rate of decay becomes
slower and more unsteady as the Reynolds number is increased, and at high enough Reynolds
numbers the vortex grows in strength. Similar behavior is shown in figure 2-3, which
focuses on the growtn or decay of the (0,1) component of the small-scale x-velocity. This
component is constant in the x-direction, and linear in the y-direction, and for low Reynolds
numbers is a mode which decays slowly. For Reynolds numbers below 10, the decay of the
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(0.1) mode is evident in the figure. For Reynoids numbers from 10 to 300, the initial
transient lasts longer than the time frame shown in the figure, but we believe that the
corresponding curves do eventually decay. For Reynolds numbers of 1000 and 3000,
however, an initial decay is followed by the appearance of an oscillation which grows in
amplitude. Thus, figure 2-3 suggests a transition Reynolds number somewhere in the range
of 300 to 1000. We should mention here that the time-step size for these simulations was
10-4 , so the period of the oscillations is many times the time-step size and thus the
oscillations are not due to a numerical instability.

2.50E-03
Re 3O

1 .50E-03

1.00E-03

5.00E-04 Ra- 
.

0.00E+00

0.00 1.00 2.00 3.00 4.00

TMme

Figure 2-2. Decay of the velocity norm of a semi-isolated vortex.
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Figure 2-3. Decay of the (0,1) mode of the x-velocity for an isolated vortex.
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Recall that the Reynolds number in this problem is related by equation 2-3 to a non-
dimensional diameter X. In figure 2-4, the initial and late-stage decay rates of the velocity
norm for an isolated vortex are plotted as functions of X'. A late-stage curve for the semi-
isolated vortex was not plotted because some of the curves in figure 2-2 do not seem to have
settled down to an asymptotic decay rate by the end of the simulation, but the early-stage
curves for the semi-isolated and isolated vortices are identical. The values of X which are
of special interest are those where the curves cross the zero line and the -1 line. Vortical
disturbances smaller than the former value tend to be damped out, while larger disturbances
are amplified and may begin to affect the large-scale flow. The two curves in figure 2-4
cross the -I line at X'= 3 and X = 8, and the late curve seems to cross the zero line for some
V. between 10 and 70. Vortical disturbances with V. smaller than 3 to 8 are damped so

rapidly that they have a negligible effect on the overall flow; they decay ir less time than it
takes the fluid nearby to travel a distance comparable to the vortex diameter. Vortical
disturbances with X larger than a transition value between 10 and 70 begin to grow in
strength. The results in figure 2-3 suggest that the transition value lies between
V.= 35 (Re=300) and V.= 63 (Re=1000). These values are consistent with our previous

results, even though the boundary conditions are different.

1 10 100

kinbid* La

Figure 2-4. Growth rate of the velocity norm vs.

As described in our most recent report [5], X is expressed in "inner coordinates." The
same values of X* declared above to be significant are also significant in the environment for
which inner coordinates w'ere originally defined: the inner layers of a wall-bounded turbulent
flow. In such a situation, V < 5 corresponds to the laminar sublayer, 5 <', < 70
corresponds to the transition region, and X > 70 corresponds to the fully turbulent outer
flow. ne close correspondence between these values and the results we have obtained show
that the latter are consistent with and provide a possible explanation for a well-known body
of experimental data.
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a. Re - 300, Time - 0.0 b. Time - 0.5

c. ime 1.0 d. "ime - 1.5

/ /

/] i
(

e. Time - 2.0 f. Time - 2.5

Figure 2-5. Evolution of stream function contours for an isolated vortex.

The structural evolution of the vortex is affected both by the large-scale shear and by
the influence of the Reynolds number (or the non-dimensional vortex diameter). Figure 2-5
shows the evolution of the stream function contours for an isolated vortex at a Reynolds
number of 300. The shear flow moves to the right at the top of the cell and to the left at the
bottom, and the vortex is rotating counter-clockwise. As might be expectted, the large-scale
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shear causes a tilting and elongation of the vortex, but it also tends to cause an intensification
of the vorticity, an effect which becomes apparent at high Reynolds numbers. This is
illustrated in figure 2-6, which shows the vorticity contours for three cases:
Re = 100 (X = 20), Re = 300 (X = 35), and Re = 1000 (X' = 63), as we! I as for the initial
condition. When Rt; = 100, the vrticity gradually decays, but when Re = 300 or above, the
vorticiry becomes more intense with time. This suggests that transition for Ldis flow may
begin i'n the neighborhood of Re = 300.

a. Voraty at Time - o.o b. Re 100, Time - 1.5

s " -- 'f _ ... -,. ' ;

c. Re-300, Time - 1.5 d. Re - 1000, lime - 1.5

Figure 2-6. Intensification of vorticity at high Reynolds numbers.

The structural evolution of a semi-isolated vortex is qualitatively similar to the
evolution of an isolated vortex, but - in the case when the vortex is rotating counter-
clockwise - the presence of the wall induces negative vorticity and positive flow between
the vortex and the wall. This is evident in figure 2-7, where the wall is on the bottom side of
each square. The decay of a semi-isolated vortex is prolonged by the presence of a virtual
vortex on the other side of the wall but, as shown by a comparison of figures 2-1 and 2-2, the
presence of the wall also causes qualitative changes in the decay transient. At present, the
reasons for these changes are not known.
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Sr. Fn., Re 300, T - 0.5, Bottom Wal b. Steam Fn., e - 300, Time - 1.5

c Vorbat, Re. 300 , Time 0.5 d. vortat, Re 300o, "Trme .5.

Figure 2-7. Evolution of a semi-isolated vortex.

While figures 2-1 through 2-3 and figure 2-6 show results for Re = 1000 and
Re =3000, and while the early results for these cases look acceptable, we were unable to

carry the integrations for these cases beyond a certain point without he computations
blowing up. In these cases, however, we have observed that the vortex appeared to be
stretched beyond the confines of the simu~ation cell. It may be that as the vortex starts to
grow, it tDtgins to exert a significant influence on the flow beyond the cell boundaries, which
is rot ncluded in our model. This should not be a piublem in the complete ATD algorithm
(except possibly at outflow boundaries), because the neighboring cells will then be present
and flow between cells will be accounted for. At outflow boundaries the boundary
c-nditions will have to be treated carefully; certainly more carefully than we have treated
them in this test problem.

2.2 Definition of a Complete, Parallelizable ATI. Aigorithm

We have continued to proceed with the implementation of the complete ATD procedure for
the Navier-Stokes equations, applied to the case of 2-D channel flow, and have identified an
algorithm which in some circumstances can le completely parallelized. This algorithm
incorporates and makes extensive use of the previously dermrbed algorithm for the 2-D
small-scale equations [5]. In the txt below, we shall first present the algorithm and thn
discuss -1rh step *.n detail. In the listing of the algorithm, each level of indentation indicates

9
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either a loop structure or parallelization at the subroutine level.

A lgorithm

Predict the large-srale solution at the next large-scale time step.
For each small-scale cell:

Project the large-scale solution onto the small-scale basis.
For each small-scale time step:

For each small-scale cell:
Interpolate the large-scale solution for the current time.
Carry out the preliminary small-scale solution.

Vhile not converged:
For each cell interface:

Smooth the velocities across the interface.
,Project the smoothed velocities onto a divergence-free subspace.
For each cell:

Re-solve the small-scale problem.
For each small-scale L ell:

Restrict the solution onto the large-scale basi:.
Correct the large-scale solution it the new large-scal time.

2. .i Predict the large-scale solution at the next large-scale time step. This is the first step
in the ATD solution algorithm defined by McDonough [2,10]. Supposing that the over-all
alg:ritm is to be phi order accurate, and that n large-scale time steps have been completed.
In this step of the current algorithm, we calculate a p--l" order prediction of the large-scal..
solution at the n+lh step. We will probably implement this step serially, using the same
solution routine we have developed for the small-scale equations. However, as long as the
time-discretization is carried out such that the resulting semi-discrete equations are in
Poisson or Helmholtz form, the many techniques whi' '- have been developed for the parallel
solution of Poisson's equation may be used to construct a parallelized procedure for this step
in the algorithm. Assuming that we use the serial routine that we have on hand, if there are N
small-scale cells in an approximately square array, and one large-scale data point per cell,
this step will require approximately 0 (N"2)operations.

2.2-2 ..-Project the large-scale solut'on onto the small-scale basis. After transmission of the
large-scale solution to each processor, this step cart be carried out in parallel on as many
processors as there are small scale cells. If there are M small-scale data points in each cell
(M"2) modes in each direction, this step will take 0 (N x ( M12N + MN 2 + M log M))
operations.

2.23 For cach small-scale time step... The small-scale time step is tvpi,:ally much smaller
than the large-scale time step. Tuis statemtat in the algorithm begins a loop which runs until
the solution for the small-scale flow has evolved from the n" large-scale timt step to the

2.2.4 Interpolate the large-scale solution for the current time. The statement: "For each
small-scale cell:" begins a section of code which is parallelizable. The first step in this
section is to interpolate the large-scale solution for the current small-scale time. Recall that
the large-scale solution has been estimated to p-l" order accuracy at the n+l large-scale
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time. In order for the small-scale solution to be accurate, and because the small-scale time
step is much smaller than the large-scale time step, interpolation of the large-scale solution
between the values at the nth and n+lI' times is required. If p = 2, a linear interpolation will
suffice, in which case this step requires 0 (M) operations per cell, or 0 (NM) operations
altogether.

2.2-5 Carry out the preliminary small-scale solution. Once the large-scale solution has been
interpolated to the current smzll-scale time, a preliminaiy solution of the small-scale
equations is carried out in each cell. This may be done in parallel if there is more than one
processor. Using our small-scale solut-)n routine, this step requires 0 (M3'2 ) operations per
cell, or 0 (NM 3 2) operations altogether. The results are only preliminary because we do not
vet have sufficient information to accurately update the velocities on the cell boundaries.
Getting this information requires iteration.

2.2.6 While not converged... This statement begins a loop in which the velocities on the cell
boundaries are updated and the solution to the small-scale equations is recalculated. This is
repeated until the solution converges. The convergence criterion is a function of the large-
scale and small-scale time steps, as well as of the accuracy required on the large scale.

2.2.7 Smooth the velocities across the interface. In any solution of an elliptic problem which
is carried out by means of a domain decomposition, it is necessary to smooth the solution
across the boundaries of the subdomains. This may be accomplished by various methods,
several of which we have already examined in connection with ATD [10,11,12]. Here we
propose to fit a fifth-order polynomial across each boundary, matching the small-scale
velocity solutions with C2 continuity at the nearest Chebyshev collocation point on either
side. Evaluating the polynomial at the boundary will then provide an updated value for the
boundary velocity.

Figure 2-8. Smoothing of the small-scale velocity profile.

This technique is shown schematically in figure 2-8, where the solid lines represent the un-

smoothed solution and the dashed lines represent the polynomial. Because the fitted
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polynomial blends smoothly with the old velocity profiles, the new boundary value for the
velocity at this stage satisfies the small-scale momentum equations to at least 0 (h), where h
is the distance from the boundary to the nearest collocation point. This step in the algorithm
requires 0 ( M log M ) operations per cell, or 0 ( NM log M ) operations altogether. It may
be parallelized, in which case communication is required between the processors holding
data for adjacent cells.

2.2.8 Project the smoothed velocities onto a divergence-free subspace. This is a crucial step,
and was alluded to in section 2.1. The smoothed velocities on the cell boundaries do not
necessarily satisfy the requirement for mass conservation. In this step, the mass flux across
each cell boundary is first computed using the new boundary velocities. Then, Lagrange
multipliers are employed to adjust the fluxes until they satisfy the zero-divergence (mass
conservation) constraint, while changing the fluxes as little as possible. The constraints on
this optimization problem do not change - they are determined by geometry alone - but
the data (the cell divergences) are different each time the problem is solved. The problem
can be reduced to a set of matrix/vector multiplications, requiring O(N 2) operations, and
there are many existing algorithms which may be used to paralleiz' this step.

2.2.9 For each cell, re-solve the small-scale problem. In each cell, the small-scale equations
are solved once again, using the updated values for the velocities on the boundaries. Note
that only the boundary values for the small-scale velocities are updated. The boundary
condition for the pressure is always determined in each cell from the momentum equation
applied on the boundary (c.f. Gresho and Sani [8]). As before, this step requires 0 (M3"2)
operations per cell, or 0 (NM3 2) operations altogether.

2.2.10 Restrict the solution onto the large-scale basis. Once the small-scale solution has
been advanced to the n+l'h large-scale time step, it is necessary to restrict the small-scale
solution onto the large-scale basis, so that the large-scale solution may be corrected. This
requires 0 (NM) operations altogether, and the restriction may be carried out in all cells in
parallel.

2.2.11 Correct the large-scale solution at the new large-scale time. This is the last step in
the ATD solution algorithm identified by McDonough, and corrects the previous large-scale
solution to pt order at the new time. Once again, if we use the same code we have been
using to solve the small-scale equations, this step will require approximately
O (N3')operations.

2.2.12 Summary of operation counts. If we take K time steps on the small scale for each time
step we take on the large scale, and if L iterations are required at each small-scale step for the
solution to converge, then one step through the above algorithm requires

0 (M"2N 2 + MN3 2 + MN log M + KM3"N + KLM3t2N + KLN2 + KLMN log M)

operations. Because the algorithm is completely parallelizable, many of these operations can
be carried out simultateously if more than one processor is available. Minimizing execution
clock-time, however, will depend on minimizing the amount of communication required
between processors, as well as the operation count of each parallelized step. This will impel
careful consideration of how the data are distributed to the various processors.
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3. ATD FOR 2-D INCOMPRESSIBLE FLOW IN GENERALIZED COORDINATES

Our current work on ATD in generalized coordinates is divided into two parts: first,
implementation of the large-scale equations using a chaotic map to simulate the effects due to
the small scale; and second, implementation of the small-scale equations with an imposed
large-scale flow. Not until both implementations have been checked out and understood will
they be combined to form a complete ATD procedure.

3.1 The Large-Scale Equations in Generalized Coordinates

The code that we are developing to solve the large-scale incompressible Navier-Stokes
equations in 2-D generalized coordinates is based on a projection method. In such a method,
the Navier-Stokes momentum equations are solved with the pressure-gradient term omitted,
and the solution is then projected onto a divergence-free velocity field. The resulting
solution satisfies the continuity equation exactly, while the momentum equation is satisfied
only approximately, but the error in the momentum equation can be kept small enough for
the method to be of practical use.

The derivation of the large-scale equations in generalized coordinates is complex and
is here omitted, as are the equations themselves. Details are in Appendix A. As is generally
the case in ATD, there are cross-terms in the large-scale equations which involve the small-
scale velocities. Initially, instead of obtaining the small-scale velocities by solving the small-
scale equations, we will model them by means of a chaotic map which we will develop, with
the expectation that the large-scale equations derived via ATD and used in conjunction with
such a map may be able to simulate more general turbulent flows than is possible with LES
and the current models for subgrid-scale effects.

So far we have derived the generalized-coordinate versions of the large-scale
momentum equations without the pressure gradient terms. These equations have been
implemented in VS FORTRAN on the [BM 3090-600J supercomputer at UK, and constitute
the first step in the projection algorithm. Our next tasks in this area are to implement the
projection step, and to develop the chaotic map to model the small-scale velocities.

3.2 The Small-Scale Equations in Generalized Coordinates

We have decided to use a Fourier-Galerkin procedure for the solution of the small-scale
equations in generalized coordinates, in part because we believe that it will be applicable for
a wide range of problems, and in part because it is easier to implement in the context of
generalized coordinates than is the Chebyshev-tau approach used in the channel flow
problem. In particular, it is possible to arrange things such that the basis functions satisfy the
small-scale continuity equation (1-4) mode by mode. This requires the introduction of the
contravarient velocities U and V:

U = u + v V=Tlu +Ty v, (3-1)

where , , etc. are elements of the Jacobian matrix of the coordinate transformation.
Then the small-scale continuity equation in generalized coordinates becomes

U (3-2)

which has a structure very similar to that in the Cartesian coordinates. Here J = ,rl, - 4yI1,.
To construct the local approximation, we consider a cell centered at (T,, 1",) and

13



assume that the solution can be represented by truncated Fourier series, defined as follows,

K

U(ri,'t) = J 2 a(t)CoSak--- sinc h (3-3a)
k.I

V ({,rl,t) = J 2,bCa(t)sinctk--- coszl h (-b

k.I

K -1 -

p ( I,rl,t) = Xck(t)sinak -- h sina1  h (3-3c)
kJ

where

h h
" '2' 2'

ak = k, c.= In

and h is the finite difference grid spacing for the large-scale calculation. A major advantage
of in choosing the basis functions as defined by equation 3-3 is that when we construct
Galerkin inner products we can eliminate the Fourier coefficient for pressure in a way similar
to that suggested by Orszag and Kruskal [13] (See also Canuto, et. al, [7]).

k fk, + 1 gl (3-4)
k1a k kt + I.fly

where fk and g., are the Galerkin inner products of the nonlinear terms. (See Appendix A).
Using the basis functions defined in equation 3-3, we have derived the Fourier-

Galerkin representation of the small-scale equations in generalized coordinates. The
derivation of the small-scale momentum equations in generalized coordinates is complex and
is here omitted, as are the equations themselves - details are in Appendix A - but the
derivation gives a set of ODE's for the coefficients and bkl. We solve this system of ODE's
via a second-order explicit Runge-Kutta method (Heun's method). We will be using the code
based on these equations to investigate the convergence of Fourier-Galerkin approximations
to chaotic solutions of the Navier-Stokes equations, and to investigate the effects of
bifurcation parameters such as the Reynolds number and the local gradients of the large-scale
velocity on the nature of solutions to the small-scale Navier-Stokes equations.

4. CHEMICAL KINETICSITURBULENCE INTERACTION

It is extremely difficult to simulate the details of interactions between turbulence and other
physical phenomena. Reynolds-averaged approaches, and LES, employ modeling on
precisely the length and time scales where interactions are likely to be important, and DNS is
too expensive to be able to produce the desired results for complex engineering problems.
During the past year we have begun to study the use of the small-scale equations of ATD as
local parametrized (with large-scale properties) DNS. We have completed an initial
simulation corresponding to the tip of an H2-0 2 diffusion flame at low Mach number (-
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0.05), and moderate Re (- 6000). Details of these studies are reported by McDonough and
Saito [14].

Here, we begin by presenting the governing equations being used, in dimensionless
form, the l-D, (nearly) compressible, viscous Navier-Stokes and species equations:

p, + (pu). =0 (4-la)

(Pu)t + (pu2) Re u -P. (4-1 b)

1) T = (PI) (PY2) (4-ic)

TU eT PC

(PYi) + (PuYi)- 1 (PYi.')X = -Ci i(PY 1 ) (PY 2) e , i= 1, 2. (4-1d,e)
t PeD

In these equations

R ° L Pe PeD - (4-2)Re 0 P 0 ' D O  '

where PeT and PeD are, respectively, thermal and mass diffusion Pecldt numbers;

Lp°2T0B 2h h2A + -- (4-3c°U0  WlW 2 Wj4

p

and

2L(pTf) B _ L(p 0Tf) B
C=- u~ww 2  1U~w (44)

Tf is a reference temperature (different from TO), and B is the pre-exponential factor. t is
the dimensional, unshifted temperature, and T is the corresponding dimensionless quantity.

We apply the additive turbulent decomposition in the manner described by
McDonough and Saito [ 141, and then using the Fourier representation

K

p*(xt) = Xa(t)sinca x*, (4-5a)

k=l

K

m*(xt) = lbk(t)COSakX*, (4-5b)

k=I
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K

T*(x,t) = C k (t)sinaykx* , (4-5c)
k=1

K
zaI(x,t) = d,(t)sina X*, (-d

k=1

K

z*(x,t) e Xktsincy x* ,:kt) (4-5e)
k=1

where ak = kic/h, and x* x-(x,-h/2), with xr=Fxi-h/2, xL+h/2] we construct a local
Galerkin procedure which leads to the small-scale ODE's

akh%'k (4-6a)

bk=B P-khCjbb. - + as+(p2p2)-.' b~

D dL e. ) ek +(!, i~x(4-6b)

- [t(jD +iDA + .J-+ _+T J+1+)c]
K ~

6k I[Liijkj-L-D&bic - ,LO - L.P+ k +t ALk+- k(-c2p 2p Pe,. 2 (P2  p 4p kPCP

7K (a
e k -(~j-j~j~bej- - k--... Lxx1-edk C~fk (4-6e)

k2,, K4~

where

+ic+27 i2 d+I te)cA

K
+ 2: (22i 2d~c 4-7'2e~c-i 7-td~d .+21,td e )cIE i~

i jj=I

(4-7)
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K

+ I (-zdic j+2iejc j+Tdiej)dic.F ijm
ijj.m=1

+ dmd neiicIG bnke-

ijj.n=1

with

A, f__*sina ihx*sina~x*sinakhx* dx (4-8a)

B j cosoi. x*sinayhx*cosaykhx* dx (4-8b)

h~ cosqahx*cosa. ,x*cosakhx* dx (4-8c)

Di = sina Ix*cosa~x*sina khx* dx (4-8d)

b

F1i A sih jhxxsnamhxsin hx* dx (4-8e)

G 1 ipt iai ~iaxsnlxsnyxsnh~ickx dx. (4-8g)

In addition, we have the trivial system for k =1:

61 =0. (4-9)

al
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The Galerkin ODE's, Eqs. (4-6), are nonlinear and for large K can be expected to be
stiff. Thus, one would typically expect to employ Gear's method as the solution technique.
But because we are anticipating chaotic solutions (and hence, sensitivity to initial
conditions), and because Gear's method is a multi-step method (with potential for parasitic
error), we have chosen to employ a modification of the A-stable, single-step trapezoidal
scheme. The modification consists of treating the nonlinear terms explicitly (via Heun's
method), while maintaining implicit treatment of the linear terms, the main source of
stiffness in this case. We of course do lose unconditional stability, but we also gain a
significant reduction in the arithmetic that would be required to solve the linear systems that
would have arisen in the application of Newton's method to the nonlinear terms had they
been handled implicitly. This, in turn, reduces the round off error, which is highly desirable
when integrating dynamical systems possessing chaotic solutions, again because of
sensitivity to initial conditions.

Seven modes were retained in the small-scale representations of all dependent
variables; i.e., K = 7. The dimensionless parameter values were Re = 6000, PeT = 1000 and
PeD = 3000. Notice that we have not employed a Le = 1 assumption. The physical size of
our small-scale region in the neighborhood of the flame tip was 0.5 mm. The dimensionless
time step size employed in our numerical integrator was At = 5.Ox 10-, corresponding to a
physical time step of 0.666... gisec. The simulations were run for 100 time steps.

Results for velocity, temperature and H2 and 02 concentration fluctuations are
displayed in Fig. 4-1. These were obtained by inserting the solutions to Eqs. (4-6) at each
time t into Eqs. (4-5) and summing only from k = 2 to k = K. This constnicticn starts with k
= 2 because k = 1 is actually a Fourier mode corresponding te pait ot the large-scale solution.

There are a number of interesting obserations to be made regarding Fig. 4-1. To
begin, the temporal behavior on the small scale corresponds to what should be termed
transient chaos. Careful examination of the figures shows that oscillatory behavior first
begins in the small-scale velocity and temperature almost simultaneously. But this occurs
only after a relatively long period of increase in negative amplitude of the H2 and 02 small-
scale concentrations, which is consistent with depletion of reactants to form products. From
Eq. (4-6b) we see that as the negative small-scale concentration amplitudes become large,
they lead to positive forcing of the momentum equation, provided the large-scale local
temperature gradient is positive. We have estimated this to have a value of 825 K/cm from
data of Saito et al. [15]. Once the oscillations in velocity and temperature begin, they feed
back into the species equations through the advective terms (for velocity), and the species
production terms (for temperature.). It can also be seen that negative concentration
fluctuations result in generally positive temperature fluctuations, as would be expected on
physical grounds, since the negative concentration fluctuations imply product formation, and
thus heat release. In general, these results appear to be generally consistent with expected
physics.
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5. MATHEMATICAL STUDIES RELATING TO ATD

Mathematical studies of techniques related to ATD were conducted at UCLA and focused on
two issues. One focus was on a comparison of a technique for coupling the large scale and
small scales in the 2D incompressible Navier-Stokes equations, to obtain efficient long time
integrations. The other focus was on the development of fast solvers for elliptic problems in
two dimensions, using domain decomposition techniques. Such solvers can be used to solve
the linear systems arising from semi-implicit time stepping.

The original version of the ATD method was based on a decomposition of the solution
into two scales, a large scale and a small scale component. Each component of the solution
was computed by an iterative procedure. The studies at UCLA incorporated the recently
developed non-linear Galerkin method proposed by Temam [16], Marion and Temam [17]
and Titi [18], which was also based on a decomposition of the solution into two scales.
However, the two scales were coupled through a stationary map which defined the small
scale component in terms of the large scale component, in such a way that the resulting
solution was on a non-linear manifold approximating the global attractor of the problem. The
domain decomposition studies focused on a comparison of this technique for coupling the
two scales with the standard pseudo-spectral method in which the two scales were coupledzx±i. iiy.

Tests conducted for the 2D incompressible Navier-Stokes equations indicated that the
non-linear Galerkin method can cost less than a corresponding pseudo-spectral method, due
to the possibility of choosing larger time steps. The coupling used in [16] between the two
scales resulted in good approximations, when the number of modes used to represent the
large scale component was sufficiently large. However, the method developed some
instabilties when the number of large scale modes was not sufficiently large. This restriction
corresponded to the number of modes required to resolve the flow, as predicted by the theory
of Henshaw, Kreiss and Reyna [19]. More tests are needed to study the possibilty of more
efficient hybrid algorithms which adapts the number of modes used as the flow evolves into
large scale structures.

The studies at UCLA on the development of fast solvers for elliptic problems, focused
on using domain decomposition techniques with non-overlapping subdomains. Efficient
versions of algorithms were developed having rates of convergence independent of mesh
parameters, and also of coefficient variations, for symmetric positive definite elliptic
problems in 2 dimensions. In some cases, the algorithms had a complexity of O(N log N),
where N denotes the number of unknowns.

Details of these domain decomposition studies are presented in Appendix B.

6. SUMMARY OF WORK TO DATE

The work performed under the two grants - AFOSR 90-0271 and 89-0281 - has covered a
range of subjects related to Additive Turbulent Decomposition. Work with Burgers'
equation resulted in the development of a non-iterative algorithm for coupling the results of
large-scale and small-scale time integrations, and the rigorous proof of its consistency and
accuracy. These results were subsequently extended to the Navier-Stokes equations. A
straightforward physical argument was found which determines a unique set of values for the
decomposition tensors required when ATD is applied to the Navier-Stokes equations. A
study of the effects of Reynolds averaging on the solution of Burgers' equation demonstrated
that the ensemble average of the solution to the unaveraged equations equals the solution to
Lhe ensemble averaged equations if and only if properly averaged Reynolds stresses are used
in the latter, and that the time average of the solution to the unaveraged equations is never
exactly equal to the solution nf the time averaged equations, even when exact Reynolds
stresses are employed.

The 2-D small-scale equations have been implemented using a Chebyshev-tau method,
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and applied used to examine the decay or growth of an isolated vortex. This problem is
related to the origin of turbulence in thean flows. The results suggest tha" chis problem is also
related to the stricture of wall-bounded flows, and tend to co-nfirm the la-r- body of
experimental data associated with such flows. The code developed to examine this p. )lem
will be at the heart of a larger code implementirg a nighly parallel ATD algorithm we have
defined for the Navier-Stokes f 7uations. Work has begun on the application of ATD to the
incompressible Navier-Stokes equations i-i 2-D generalized coordinates. The large-scale and
small-scale equations, e' pressed in ge:-'ralized coordinates, have been derived, and their
implementation is in progress.

A number of mathematical studies have been carried out regardig ATD and domain
decomposition. Two particular domain decomposition methods were st.iUed in connection
with ATD applied to Burgers' equation. The results slhowed that the Schwarz alternating
method was more robust than the Gauss-Seidel-Newton (GSN) metmod, and required fewer
iterations, but the arithmetic per iteration was much lower for the GSN method than for the
Schwarz method. An approach related to ATD, the nonlinear Galerkin method of Temam
[16], Marion and Ternam [17] and Tit [18], was compared to the pseudo-spectLal method of
Henshaw, Kreiss and Reyna [19], and proved to be somewhat more efficient. And studies
have been made of efficient and easily parallelizable methods for solving elliptic problems.
These are especially applicable to the solution of the small-scale equations on the global
domain.

Future work is expected to include the implementation of the complete ATD algorithm
for the Navier-Stokes equations and its application to the problem of transition in channel
flow, solution of the large-scale equations using a chaotic map to model the subgrid-scale
effects, a parametric examination of the bifurcations in the solutions to the small-scale
equations, and the development of a complete ATD code for generalized coordinates.
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Chan, T. F., at the Fifth International Conference on Domain Decomposition methods for
Partial Differential Equations, Norfolk, VA, May 1991.

Chan, T. F., at the Oberwolfe Conference on Linear Algebra, Oberwolfe, April 1991.

Hylin, E.C. and McDonough, J.M., "Chaotic Motion on the Small Scale of the Navier-Stokes
Equations," Bull. Amer. Phys. Soc. 34, 2251, 1989.

Matthew, T. P., at the Fifth International Conference on Domain Decomposition methods for
Partial Differential Equations, Norfolk, VA, May 1991.

McDonough, J. M. "Investigation of Chemical Kinetics/Small-Scale Turbulence Interactions
Via Additive Turbulent Decomposition," presented at the Workshop on Advances in
Computational Methods for Transport Phenomena, Lexington, KY, Jan. 7-9, 1991.

McDonough, J. M., "The Large-Scale Equations of Additive Turbulent Decomposition as a
Model of Chemically Reacting Turbulent Flow," presented at the XMth International
Workshop on Mathematical Methods in Combustion," Tsukuba, Japan, July 26-27, 1991.

Peng, J.-S. and McDonough, J.M., "An Analysis of Reynolds Averaging Via a 1-D Burgers'
Equation," Bull. Amer. Phys. Soc. 34, 2332, 1989.

Refereed Conference Papers/Presentations

Chan, T. F. and Matthew, T. P., "An application of the probing technique to the vertex space
method in domain decomposition," Tech. Report 90-22, UCLA, Department of Mathematics,
Oct. 1990. Appeared in Proceedings of 4th International Conference on Domain
Decomposition Methods, Moscow, May 1990. SIAM.

Hylin, E.C. and McDonough, J.M., "Additive Turbulent Decomposition Applied to an
Isolated Vortex in a Constant Shear Flow," to be presented at 4t1h International Symposium on
Computational Fluid Dynamics, Davis, CA, Sep. 9-12, 1991.

McDonough, J. M. and Peng, J.-S., "A Numerical Study of Reynolds Averaging Via
Burgers' Equation with Chaotic Forcing," to be submitted for presentation at the 2nd National
Fluid Dynamics Congress, Los Angeles, CA, June 22-25, 1992.

McDotriugh, J. M. and Saito, K. "Local, Small-Scale Interaction of Turbulence with
Chemical Reactions in H2-0 2 Combustion," presented at 131h International Colloquium on
the Dynamics of Explosions and Reactive Systems, Nagoya, Japan, Jul. 28 - Aug. 2, 1991.

Other Papers

Chan, T. F. and Matthew, T. P., "The interface probing technique in domain decomposition,"
Tech. Report 91-02, UCLA, Department of Mathematics, Feb. 1991. To appear in SIAM
Journal on Matrix Analysis.
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Chan, T. F., Matthew, T. P., ard Shao, J-P, "Some domain decomposition algorithms for
self-adjoint elliptic problems," under preparation.

Chan, et al., also plan to write a paper based on ;heir studies of the ATD method and the
nonlinear Galerkin method.

Invited Talks and Lectures

McDonough, J. M., "Effects of Reynolds Averaging Applied to Quasilinear Parabc2.,.
PDE's," prented at University of Kentucky Mathematics Seminar, Lexington, KY, April
25, 1991.

McDonough, J. M., "Effects of Reynolds Averaging Applied to Quasilinear Parabolic
PDE's," presented at NIST, Gaithersburg, MD, July 2, 1991.

McDonough, J. M. "Additive Turbulent Decomposition: A New Direction in Turbulence
Simulation -- An Overview," presented at the University of Tokyo, Tokyo, Japan, July 25,
1991.

Masters Theses

Peng, J.-S., "An Analysis of Reynolds Averaging via One-dimensional Burgers' Equation,"
Mechanical, Aerospace and Nuclear Engineering, University of California, Los Angeles,
1990.
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APPENDIX A: DERIVATION OF THE ATD EQUATIONS IN GENERALIZED

COORDINATES

A.1 Derivation of the Large-Scale Momentum Equations in Generalized Coordinates

With the pressure-gradient terms omitted, the Navier-Stokes momentum equations in 2-D
cartesian coordinates are:

au + (u2) + (vu) AU (A-1)

-v + -(uv) + -(v 2) = l AV (A-2)
at ax ay Re

Define a general coordinate transformation T such that

( x 1. x 2 )*-T- ( 41. 2 )  (A-3)

We can apply this transformation to equations A-I and A-2 and, using the chain rule for
derivatives, obtain the corresponding equations in generalized coordinates:

..-- -) ( + {[~ U2+yUVj + [(1 x u2+T Y uv)}

1 [ _ ( 2 }UD U 2a (A-4)

1 1 l u ,. u au 2 au i

and

. Y V--) + (Txuv+ yV2)1+ UV[+( lyV2)

- _L( 2 yr D0 2y (A-5)

Re i T

- {[.1(T2 v~a aV 1xD TY T2aDV

Where

A-i



+=[i a~: and J axI2]
T=ax2 ax 2 [a , ak,

Using the particular decomposition described by Hylin in McDonough, et al. [A-1],
large-scale momentum equations corresponding to equations A-I and A-2 are

au + .x (u2) + ay (vu) + -x(u*u) + -y(v*u) = - An (A-6)
at ax a)' ax ay Re

+ -i-(uv) + -v + -L~(u*v) + --L(v*v) = -2 -Av (A-7)
at ax , ay axay Re

where u* and v* denote the small-scale velocities. In generalized coordinates, these
equations become:

-L(4 {[(u vu)]+[_(ii u2+ 2 vu]}

+ {[+L(u*U+4 V*U)1 +[+1 (Tixu*u+lyv*u)]}

(A-8)

1[ rl 2 au au au 2 au 1

- [ _(71r2 a .. + a- -)} =0

and

T~. (-i- + { J xv Y dQ{ I J x iYv}

+ {[f~ v+~~) +[+ (Ty, *V+7lyv*v)]

(A-9)
1 1 ( 2 av a l V+2a

(1 2 [ .av 2a+-y av 2av 1 1

A-2



The underscored terms are those involving the small-scale velocities u* and v*, and do not
appear in equations A-4 and A-5. We will be developing a chaotic map to model u* and v*,
with the expectation that the large-scale equations derived via ATD and used in conjunction
with such a map may be able to simulate more general turbulent flows than is possible with
LES and the current models for subgrid-scale effects.

In discretizing equations A-8 and A-9, we first linearize them by means of the 6-form
quasilinearization, then rearrange the equations to make the diffusive and convective terms
clearer. For the spatial discretization we use the standard staggered grid, with centered
differencing for the diffusive terms and first-order upwinding for the convective terms.

A.2 Derivation of the Small-Scale Momentum Equations in Generalized Coordinates

As derived by Hylin in McDonough, et al. [A-I], the small-scale momentum equation is

DO .. _1 Au* - V-(uu*) - V.(u*u*) - Vp* (A-10)t Re-

while in generalized coordinates, the momentum equations are in the form

Q + F + Gn = -- (R + S + T ), (A-1i)

as given by Fletcher [A-2]. The contravariant velocities U and V are defined to be

U= u+ v V = lX u + 1y v, (A-12)

where T , , etc. are elements of the Jacobian matrix of the coordinate transformation. The
momentum equations contain both contravariant velocities and primitive velocities and in
terms of these velocities the terms in the small-scale version of equation A- 11 become

Q1 I'lU - ~~yV 1

Q= -L 1lV. _4 rU J (A-13a)

F 71 flU" - kV*)(U" +  U'c + x

+ J Re J
F =] (A-13b)

T(kv'- 1,U U)(U + ,+ Relyy

)(V + V + Re ) + rlXp

G L "  Re (A-13c)

R = [(4'x + 4'2))o1U 0 - .VI] (A-I3d)
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Jf (2klrI,+ '-n(kV* - (A-i 3e

J L~n" + l1v5(kU - 11 )]

where U and V are the large-scale contravariant velocities.
To construct the local approximation, we consider a cell centered at (, 1I), and

assume the solution can be represented by truncated Fourier series, defined as follows,

K TT

U (,rlt) = J ,,a(t)kcosh sm a  h (A-14a)
kJ

V*(4,1,t) = J K b (tsinak---- COSc--'-- (A- 14b)I:i h h
kJ

p (4Sl,t) hCkl(t)sinak-Ih sin0 h
kj

where

2' 2'

ak = kt, a, = In,
and h is the finite difference grid spacing for the large-scale calculation. We now substitute
Eq.(A-14) into (A-13) and construct the Galerkin inner products. The resulting system of
ordinary differential equations for the time-dependent Fourier coefficients is

i CIC d4 JRe

+ 
-t'diL s ",

Re. L Jd j h ) + y)A

A-4



-4 b 9,d d-[L. (U +bj x kJa C2 1yl'd d4 J Re Id

Rej J Re k.

where

+ = '~i2 5 dd 'k4c, 2 = osyi4l +T bl

-d2 F- k a.112B + T1 2T y .~a.(n2C + m12)B

b..a1LTx ) C~ 1 -( h j - mD)D bA-16

dj K K
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1 Introduction

This project concerns a study of some techniques for efficiently integrating the incom-

pressible Navier-Stokes equations over large time intervals. For such problems, with

time independent forcing, turbulent solutions may converge in function space to a

finite dimensional set referred to as the global attractor, see [4]. In this case, the long

term behaviour of the solutions can essentially be described by a finite dimensional

sytem of ODE's which captures the large scale properties of the global attractor.

Thus far, however, computing accurate solutions of the incompressible Navier-Stokes

equations by direct simulation is still very expensive, especially in three dimensions.

Some alternate techniques have been proposed which reduces this cost, such as Large

Eddy Simulation techniques (LES), see (5] [6]. Recently, the Additive Turbulent De-

composition method (ATD) was proposed by McDonough and Bywater [9] [10] as an

alternative direct simulation technique without the use of statistical parameters. In

this report, we breifly describe our studies on the ATD method and related meth-

ods for numerically integrating the incompressible Navier-Stokes equations over large

intervals of time.

We compare two approaches. In one case, we follow a method related to the basic

idea in the original version of the ATD method proposed in [9, 10], which was, to

decompose the solution as a sum of a large scale and small scale component and

to approximately determine each component by an iterative technique based on the

original equations. Our studies led us to incorporate the coupling used in the recently

developed non-linear Galerkin method of Temam [13], Marion and Temam [8] and

Titi [14]. The non-linear Galerkin method is also based on a splitting of the solution

into two components, large scale and small scale. However, unlike the coupling used in

the original ATD version, the coupling between the large scale and small scale terms



is determined by a stationary mapping which defines the small scale component in

terms of the large scale component. 'We use this form of coupling between the two

scales.

In another approach, we use a pseudo-spectral method of Henshaw, Kreiss and

Reyna [7], in which the number of modes used is chosen to provide a convergent

numerical approximation. This is based on a theory for the minimum scale of the

flow, presented in [7]. The minimum scale can also be used to adapt the number of

modes required to resolve the flow, as the flow evolves into coherent structures, therby

leading to improved efficiency. In Section 5, we compare the non-linear Galerkin

method with the pseudo-spectral method. Our studies are restricted to the vorticity-

stream function formulation of the 2D incompressible Navier-Stokes equations on a

periodic domain,

The rest of the report is outlined as follows. We describe the vorticity-stream func-

tion formulation of the incompressible Navier-Stokes equations on a periodic domain

in 2 dimensions. We then describe its discretisation by a pseudo-spectral method

in space and a 4th order predictor corrector in time. Following that we describe

the non-linear Galerkin method. We present some numerical comparisons of the two

methods considered and some of their properties are discussed. Finally, we report on

some related work we have done on developing fast solvers for elliptic problems using

domain decomposition techniques. Such algorithms can be applied to solve the linear

systems obtained when semi-implicit time stepping is used for non-periodic boundary

conditions.

2 Navier-Stokes equations in two dimensions

The velocity-pressure formulation of the 2 dimensional incompressible Navier-Stokes

equations on the square [0, 2-.] x [0, 2-.r] with periodic boundary conditions reads:

ut + uu,+vu+ Vp = vAu+f in [0,27r] 2

7. u = 0 in [0,27rj 2  (1)
u(t=0,.) = u0  for t =0

where u= (u, u) denotes the velocity, p denotes the pressure, f denotes a time inde-

pendent forcing, and v denotes the kinematic viscosity. The vorticity w = V x u

2



satisfies:
wt + uw + vw7 = W+ f
W(t = O,x,y) = Wo(X,y) (2)

where (u, v) = u = (?P,, -0,) is the curl of the stream function V' which satisfies:

-A? = ..

Thus, in the 2 dimensional case, u, v and i0 are determined by the vorticity and we

will consider the solution of scalar evolution equation (2) for w.

3 A pseudo-spectral method

We now describe a pseudo-spectral method used in Henshaw, Kreiss and Reyna [7],

and Browning and Kreiss [2], which leads to convergent numerical approximations

for the vorticity equation (2). In the pseudo spectral method, the solution w is

approximated by a truncated Fourier series wv, whose coefficients (which depend on

time) evolves as a system of ODE's:

N/2-1

W(t, x, Y) WN(t, X, Y) E c:7Z(t, kj, k2 )ei(k, x+k2y),

k1 ,k 2=-N/2+1

where, for each k= (kj, k 2), the Fourier coefficient c (t, kj, k2) satisfies:

.,t (t,k) + iil.(t, k) + i"-zy(t, k) + t'k12
C(t, k) = f(k).

The ODE system can be written:

tbt + vAzb = G(zb),

where G(zb) = -uw3 - twy + f represents the convection term and the forcing, and

A is a diagonal matrix with entries: Ak = k1l.

In our tests, the ODE system for the coefficients &(k) were integrated by the use

of a 4th order Predictor-Corrector method, as in [7], in which the diffusion term was

integrated exactly. For time step At the prediction step reads:

tbp = e-LAAttb, + A (23e -AAtG, - 16e -2 AAtG,_ + 5e-3 1AA'Gn2),

12

and the correction step:
At

b,*+1 = e-AAt zb, + At (9GP + l9e-LAAIG,, - 5e-2vAatGn_ + e-3LAAtGn_ 2 )

3



In our tests, for mesh parameter - 2/N, the time step At was chosen to satisfy

the following CFL condition:

At
CFLj (u.+v -< CFL,,FL,, < ()h -

where CFLmi, was chosen to be 0.1 and CFL,o.: was chosen to be 1.2. So long as

the choice of At kept the CFL quantity within the bouuds, the step size was not

altered. But when it fell outside the range, the new time step was chosen to ue:

0.5h
Atnew = (l .+ IvI.)

The cost of evaluating the derivitive wt is roughly proportional to the cosL of

computing the convolution term. This can be evaluated approximately using 5 two

dimensional FFT's by mapping ., 7 u, fu and i3 to real space, forming uw, + vy,: in

real space, and mapping the result back to Fourier space (pseudo-spectral method).

The theory of Henshaw, Kreiss and Reyna [71 gives an explicit bound for the

maximum number of m,- des ,V,, needed to resolve the flow:

a <c ( IDu 1o
2

where v is the kinematic viscosity and IDulKo is the maximum of the velocity gradients

for the flow, for all time, if that is known a priori. Over large time intervals, as the flow

evolves into large scale structures, it would be possib.'e to adapt Nina: for improved

efficiency, by using the above estimate. We intend on testing the efficiency of adaptive

gridding.

4 Non-linear Galerkin method

As mentioned earlier, our studies of the coupling between the two scales in the original

version of the ATD method, led us to consider an alternate form of coupling used

in the noD-linear Galerkin method of Marion and Temam [8] and Titi [141. We have

used thL coupling in the tests reported here. We now briefly describf the nonlinear

Galerkin method for an evolution equation in a function space H:

w, + Aw + B(w) =f (3)

w(0) = Wo

4



where A denotes a self-adjoint positive operator on H (such as -A), v denotes a small

parameter, B(w) is a nonlinear map (such as uw, + vw,), and f ,s a time independent

forcing. The function space is decomposed H = HL + H S , where HL represents

the space spanned by -ome large scale eigenfunctions of A and H s represents its

orthogonal complement. The solution w can be decomposed w = p+ q, where p E HL

and q - Hs. Equation (3) is then equivalent to the coupled system:

pt- +vAp+ PLB(p+q) = PLf (4)
qt + vAq + PsB(p + q) = Psf

where PL denotes orthogonal projection onto HL and Ps = I - PL. In the original

version of the ATD method, system (4) was solved by means of an iterative procedure.

However, in the non-linear Galerkin method, un2. r the assumption that IIIIqJ < Jlp

and lqtI! < <fJvAq + Ps(B(p) - f)11, the 2nd cql-ation in (4) is approximated by:

vAq + PSB(p) - PSf,

which definL the small scale component q in terms of the large scale component p,

by a function 4D(p) defined by

q = D(p) = (vA)-Ps (f - B(p)). (5)

The resulting new system for the large scale component p reads.

pt + yAp + PLB(p + ,(p)) = PLf (6)

Equation (6) comprises the nonlinear Galerkin method for p, and is different from the

standard Galerkin equations for p: t includes the nonlinear coupling between the two

scales. For each p, its corrtsnondOng small scale component D(p) can be determined

using (5), thereby leading to a solution in HL + H S .

In our application, the spatg H C L2 ([O, 2z ] x [0. 2_j) corresponds to the Fourier

modes of wavenumbers less than N, HL correspopds to Fourier modes of wavenumbers

less than N/2 and H S corresponds to the remaining Fourier modes in H. In the tests,

we discretised evolution equation (6) for the large scale component n, by an application

of the pseudo-spectral method. We note that the method described here can also be

extended to the case where finite difference or finite element discretisations are used,

as has beer reported in the 1991 ICIAM conference.
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5 Numerical Tests

We present here t',, :csitA of a sample test comparing the performance o" the non-

linear Gal'rXi method with the standard pseudo-spectral method, as described in

Sect'ons 3 and 4. In particular, we present contour plots of the vorticity, plots of the

energy op,, trum, the spectral decay in the vorticity, and plots of the norms of the large

scale and mall scale components of the solution, for the two methods considered.

In the 'est, we chose tne forcing f to be zero. The initial data wo for the vorticitv

was chosen ;hat the Fourier coefficient 4 the corresponding stream funztion VO

satisfied:

10(k 1. )l f J C, {Ikj-2[j + (Ikl/6)6]}/ 2  Ikl < 20.5

j0, JkI > 20.5f

as :n Browining an(' Kreiss [2] The phases of the Fourier coefficients wore chosen

randomly from [0,2,j. As described in [2], if we chose C1 so that, 1ea0] 1, then

we can approximately evaluate IDul,. For this particular choice of C-, and for

kinematic viscosity v 5.A x 10- 4 , we obtain an estimate for the nu: iber of mo :

required to resolve the flow to be:

.mVx :34.

In the test, we therefore chose 64 modes in each direction, for the pseudo-spectral

method, with:

S S Z' (kj, k,)ei~k.:c+k2Y).
1k, 1_531 [k2<31

For the non-linear Galerkin method, we chose 32 modes in e-ch direction for the large

scale component (extended by its small scale component so that there are still 64 x 64

modes in their sum). i.e.,

NGM -- p + q,

where

p ~(kj, k2)e (k~ + k2,

lku<15 jk2 1 1.,

and

q & ( 1 , k2)(lk2.
Fkl 1<15 16<1k 2 1<31

(k, k,)e e + k- Y3 F k)e(kvr+k2Y).

16 <Iki1 31 1 k211:15 16<Ik11<31 16<;k2l<3



The total number of modes for p + q is therefore 64 x 64.

For the above choice of initial data w0 , the energy E(l) is proportional to 1-3 for

large 1, where E(l) represents the energy corresponding to wavenumbers of magnitude

1: 1 1
E(1) E 7 (II2 + 1I3 12) = 1kJ1214'12 ' for I- [l-0.5,1+ 0.5). (7)

~ kljzh - IkIE1,

Similarly, %i quantity W(1) representing the average magnitude of the Fourier coeffi-

cients of WN of wavenumber I is defined:

These quantities are computed in the numerical tests.

In Figure 1, we present the contour plots of the the vorticity, obtained by both the

pseudo-spectral method, and the non-linear Galerkin method, at time T - 5.0. In

Figure 2, the contour plots at time T - 40.0 is presented. The times are not exactly

40.0, since variable time steps were chosen by using the CFL condition. In Figure 3 we

)mpare the energy spectrum of the solution at time T - 5.0 and T ; 40.0 obtained

by both methods. Figure 4 is a similar plot of the quantity W(l) defined in (8), at

times T 5.0 and T 40.0. In Figure 5 we plot the norms of the components 1lpl,

IIqji and ijqtlj as functions of time, to see whether the approximation that Ijlq < jpfl

and IjqtIl < !IpjI is accurate.

A discussion on the numerical results. The results in Figures 1 through 5

indicate that the non-linear Galerkin method based on N/2 modes (plus the remaining

modes defining the small scale component q) gives solutions which are similar to those

obtained by the pseudo-spectral method with N modes. Since only half the number

of modes were used for p in equation (6), the non-linear Galerkin, can use times steps

At which are twice as large as that required by CFL limitations for the corresponding

pseudo-spectral method with N modes. However, the evaluation of 4 (p) as well as

B(p+ (p)) requires some 2D FFT's involving N modes in each direction, rather than

N/2 modes in each direction. Overall, there is a reduction in computational cost by

a fixed fraction, due to the presence of the iarger time step allowed in the non-linear

Galerkin method.

tAlong another line, it was observed that if the number of modes N/2 used to

represent the large scale solution p was not sufficiently large, then the function D(p)

7



Figure 1: Contour plots of the vorticity at T 5 .0
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Figure 2: Contour plots of the .,ortl(citv, at FI' 40.0

Result for pseudo-spectral at T=40.04
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Figure 3: Energy spectrurn E( 1)

Pseudo-spectral method. Energy decay. Log(E(k)) .vs. Log(k)
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Figure 4: Spectral djecay of vorticity

Pseudo-spectral method. Spectral decay. Log(W(k)) vs. Log(k)
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Figure .5: N" orms of 11pH1 'jqj and jjq~fl.
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became large and an instability developed. We attribute this to the following. Since,

by the definition of (D(p):

(k) = (p)(k) = (vIk2) - {f(k) - B(p)(k)}, for indices Iki > cN

it follows that if the divisor vIkI2 is small, then the corresponding Fourier modes are

magnified, and an instability can result. This can be fixed by requiring the number

of modes N/2 to be sufficiently large, so that:

vtkI2 > 1 for IkI > cN.

This requirement leads indirectly to a similar condition appearing in the minimum

scale derived by Henshaw, Kreiss and Reyna [7]:

N > Cv - / 2 ,

for some positive constant C.

We intend to perform more tests on these methods, including the case where the

number of modes used is varied as the flow evolves into large scale structures, and

also the use of hybrid algorithms. These may lead to accurate integrations over large

time intervals with even more reduced computational cost.

6 Elliptic solvers

Finally, we briefly summarise results of related studies on efficient and easily par-

allelisable methods for solving elliptic problems [3], which can be applied to those

linear systems which occur in time stepping the Navier-Stokes equations. Our studies

have been based on two well known domain decomposition algorithms [1] [12]. They

are based on a partition of the domain into many non-overlapping subregions, and a

preconditioner is developed for the resulting reduced interface problem. The precondi-

tioner essentially corresponds to a block Jacobi method, where the blocks correspond

to couplings between unknowns on certain subregions of the interface. The subregions

of the interface are chosen to be the edges separating the subdomains, a coarse grid

consisting of the vertices of the subdomains, and cross-shaped regions centered about

the vertices. Our studies have focused on replacing the exact blocks of the reduced

interface matrix, by spectrally equivalent preconditioners, as this significantly reduces

13



the over head cost. Numerical experiments confirm theoretical results indicating that

the resulting preconditioner has an optimal rate of convergence [3]. With the use of

fast Poisson solvers on the subdomains, the resulting algorithm can be implemented

in O(N log(N)) operations where N is the number of unknowns. Such algorithms can

also be applied to indefinite linear systems, such as those obtained by discretisations

of the velocity - pressure formulation of the Navier-Stokes equations [111.
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